Effects of carbon monoxide on cochlear electrophysiology and blood flow.
نویسندگان
چکیده
The belief that the cochlea is particularly vulnerable to a reduction in oxygen availability comes predominantly from studies reporting the disruption of electrophysiological measures, such as the compound action potential, endocochlear potential, inner hair cell intracellular potentials or afferent nerve fiber responses by asphyxiation. Because hypoxia has frequently been suggested as an underlying mechanism by which many ototoxic agents produce injury, and because such agents are not likely to completely disrupt oxygen delivery, we investigated the effects of graded hypoxia (using doses of carbon monoxide) on cochlear blood flow, the compound action potential (CAP) and the cochlear microphonic (CM). High doses of carbon monoxide injected intra-peritoneally yielded reversible loss of the CAP sensitivity for high frequency tone bursts, the extent of which was dose dependent. The loss was observed first at the highest frequency tested (50 kHz) and as carboxyhemoglobin levels increased, contiguous lower frequencies were influenced. Recovery progressed from low to high frequencies as carboxyhemoglobin levels declined. Carbon monoxide administration also produced a dose dependent elevation in the cochlear blood flow measured by a laser Doppler flow monitor. The data suggest that carbon monoxide administration disrupts cochlear function only under extremely severe exposure conditions. An elevation in cochlear blood flow may well serve as a protective mechanism which maintains cochlear function in the face of declining blood oxygen carrying capacity and delivery. While the site of action of carbon monoxide in the cochlea is uncertain, the data clearly indicate that elements involved in the generation of the CAP for high frequency tones are particularly vulnerable.(ABSTRACT TRUNCATED AT 250 WORDS)
منابع مشابه
EFFECTS OF HYPOXIC HYPOXIA AND CARBON MONOXIDE-INDUCED HYPOXIA ON THE CARDIOVASCULAR SYSTEM AND REGIONAL BLOOD FLOW OF THE ANESTHETIZED CAT
The purpose of this study was to investigate the potential responses of the cardiovascular system and regional blood flow to hypoxic hypoxia (BB) and to carbon monoxide (CO)-induced hypoxia (COH). Ten anesthetized cats were studied under two nonnoxic (control: CONT) and two hypoxic conditions. Four types of radioactive micro spheres were used to measure regional blood flow during CONT an...
متن کاملProtective Effects of α-Tocopherol on ABR Threshold Shift in Rabbits Exposed to Noise and Carbon Monoxide
Noise induced hearing loss (NIHL) is one of the most important occupational disease worldwide. NIHL has been found potentiate by simultaneous carbon monoxide (CO) exposure. Free radicals have been implicated in cochlear damage resulted from the exposure to noise and due to the CO hypoxia. This study examined whether α-tocopherol administration, as a free radical scavenger, causes the attenuatio...
متن کاملEffects of Temperature and Particle Size Distribution on Barite Reduction by Carbon monoxide Gas
In this research, a mineral barite powder was reduced by carbon monoxide gas and the effects of reduction time and temperature was investigated as well as barite particle size. Results showed that the best result would be feasible when the barite particle sizes are between (-70 +100) in mesh scale. The barite reduction could reach the maximum level (98%) after reduction by carbon monoxide at 85...
متن کاملEnd-tidal Carbon Dioxide Measurements in Unintentional Non-Fire-Related Carbon Monoxide Poisoning
Background: Poisoning with carbon monoxide occurs occasionally worldwide, and the gold diagnostic standard is to measure carboxyhemoglobin level in the blood. This study investigated the correlation between carboxyhemoglobin and the end-tidal carbon dioxide levels in 50 patients with carbon monoxide poisoning. Methods: We recruited 50 volunteer patients who had been admitted to the Emergency S...
متن کاملProtective Effects of α-Tocopherol on ABR Threshold Shift in Rabbits Exposed to Noise and Carbon Monoxide
Noise induced hearing loss (NIHL) is one of the most important occupational disease worldwide. NIHL has been found potentiate by simultaneous carbon monoxide (CO) exposure. Free radicals have been implicated in cochlear damage resulted from the exposure to noise and due to the CO hypoxia. This study examined whether α-tocopherol administration, as a free radical scavenger, causes the attenuatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Hearing research
دوره 27 1 شماره
صفحات -
تاریخ انتشار 1987